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Ion Acoustic Turbulence and 
Anomolous Transport 

W. H o r t o n  1 

Theoretical interpretation of ion acoustic turbulence is shown to require the use 
of renormalized turbulence theory for calculating the turbulent spectra and 
transport coefficients. The physics of solitons, double layers, and ion phase 
space holes have an impact on the one-dimensional problem. 

KEY WORDS: Anomolous transport; turbulence; anomolous resistivity; ion 
acoustic waves; ion acoustic solitons. 

1. ION A C O U S T I C  PROBLEM 

Ion acoustic turbulence is driven in a collisionless plasma by a wide range 
of mechanisms including the injection of laser beams or particle beams and 
through the passage of high currents. In this review we consider principally 
the case where the ion acoustic waves given by co(k)=kcs/(1 + k2"2zDe)l/2 
with the ion sound speed G=(Te /mi )  1/2 and the Debye length 
2De = (Te/4nne2) 1/2 are driven unstable by a current j = -envy.  The drift of 
the thermal electrons through the ions with velocity v a produces linear 
instability with ?e(k)=(r~/8) l /2(me/mi) l /2(k 'va-c%) from the positive 
slope on the electron velocity distribution for va> c%/k = G. For Te~ Ti 
and va>>c s the ion Landau damping ?/(k) = --(7C/8) 1/2 
(Te/T~) 3/2 COk exp(--Te/2Ti)  is negligible and all k modes within the polar 
angle 0 ~< 30 with respect to vd where cos 30 = Cs/Vd are linearly unstable. 

Examples of current-driven ion acoustic turbulence occur in shocks,~ 
magnetic reeonnection, (2-5), plasma return currents/6) arising from the 
current neutralization of injected particle beams and turbulent heating 
experiments. (7,8 
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The principal effect of ion acoustic turbulence (6-11~ is to produce an 
anomalous resistivity r/= meVefr/ne 2 and the associated turbulent heating (7"8) 
through the scattering of the electrons from the ion acoustic fluctuations. 
Numerous experimental studies of turbulent heating show the presence of 
ion acoustic turbulence from the measurements of the fluctuation spectra. 
The principal characteristics of the system are the presence of a turbulent 
heating pulse with COpiAt~lO0 during which a strong resistivity and dc 
electric field ( E )  arise with e ( E ) =  Verfmev a. The effective collision fre- 
quency vefr< (npi typically exceeds the collisional resistivity by several orders 
of magnitude. The turbulent heating pulse produces a conversion of drift 
electron kinetic energy ~nemeV 2 into thermal energy n e T e through j .  EAt  = 
nemevZveffAt. The momentum of the drifting electrons nemeV~ is taken up by 
the ion acoustic waves propagating in the direction of vd and then trans- 
ferred to a small fraction of fast ions (12-14) n f / n ~  (me/mi) 1/4 with T~r~�89 e. 

The production of the fast ion population arises from the turbulent trap- 
ping of the ions by the finite amplitude ion acoustic waves. (15) 

The detailed interpretation of a turbulent heating experiment requires 
that account be taken of the losses of the electron thermal energy, of the 
fast ion component, and of the waves from the region of turbulent heating. 
The turbulent heating and loss processes taken together then determine the 
long-time macroscopic evolution of the system. (~6) Current penetration and 
net thermal deposition or efficiency are determined from the macroscopic 
balance analysis. Here we are only concerned with the microscopic laws for 
the anomalous resistivity arising from ion acoustic turbulence. The 
microscopic laws are the basis for the macroscopic confinement and 
heating studies. (7'16) 

2. COLLECTIVE INTERACTIONS BETWEEN ELECTRONS AND 
IONS 

The ion acoustic waves and the associated solitons and double layers, 
are the mechanism for the interactions between electrons and ions in a 
collisionless plasma. During the slow ion acoustic motion the electrons 
remain near equilibrium with -eneE(x, t)=V(neTe)~ TeVne and the ions 
are accelerated by the electric field according to ~?v + v" Vv = (ei/mi) E(x, t). 
The ion density changes by 0tni(x, t )=  - V .  (niv). The self-consistent long- 
range Coulomb electric field is determined by 

V. E = -V2~o(x, t) = 4 n e ( n i -  ne) (1) 

For small-amplitude oscillations these closed fluid equations yield 
co u = kcs/(1 + kZ.~2e)l/2 and for wavelengths long compared with the Debye 
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length o) k = Ikl Cs. For large amplitudes the steeping nonlinearity v~?xv of 
the fluid equations balances with the dispersion from e) k = kG(1-1k22~e) 
to produce ion acoustic solitons propagating with speeds c > cs. We discuss 
the soliton components in Section 5. To describe the interactions of the 
particles with waves requires the Vlasov equations. 

For  finite amplitude potential fluctuations q~ko~exp(ik'x--icot) the 
fluctuation 6fk~o(v) e x p ( i k - x - i c o t )  of the particle distribution function 
satisfies 

e (okk O < f )  e c~ (~ - k �9 v) 6fkoj(v) = - -m OV 2 (ok, k l '  6,) v 6fk_ki (2) 
mkl#k 

and the mean distribution evolves by 

c3t = m ~v ~, ik(o~6fk~(v) (3) 
kco 

where k = kco. In the limit (ok ~ 0 we write from Eq. (2) 

(-< o)  l<s> ~$fk~ g~176 --rn-(okk'-~v ( f ) = - - k  

and obtain the self-consistent linear modes el,(co)(ok = 0 from Eq. (1) with 

with 

2 2 

+ --p _~ + t~k gl(~) = 1 k2 dv g~ 63 v k2A2 e co (4) 

,, cop2 f dv rotS(co_ k.  v) k. ~ ( f  > 
G = k 2 J ~v 

where g~ ( co -  k -v  + i0 + ) 1 is the linear particle propagator  and e~ 
gives the response of the resonant particles which we now consider in more 
detail. 

A nearly resonant electron co---k'v is accelerated in one wave period 
1/c% by 

AV = ek(ok ek(ok 
rne(oa-k" G) rn~cok 

The electron is accelerated out of resonance when A V>co/k, which 
requires 

CO e(ok > ( cok ) 2 me 
3 V > - ~  - -  (5) 

k Te \kve/  mi 

822/39/5-6-19 
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Fig. 1. Turbulent heating pulse computed from mode simulation with renormalized tur- 
bulence theory using v a = re(0), rni/rne = 1600, and Te(O)/Ti(O) = 50. 

The acceleration out of resonance is not described by the linear propagator 
g~ The expansion of A V(k, v) in powers of g~ ) fails for amplitudes 
greater than the critical amplitude given in Eq. (5). In fact, we know for a 
single resonant particle the nonlinear motion can be expressed in terms of 
the pendulum equation k2= _co2 sin kx with co~=ek2~o~/me. For  two 
waves the motion becomes stochastic at the very low amplitude 
v,(k)=(e~ok/me)l/2~ (co/k)=c,. Study of the test particle with the 
Hamiltonian H= �89 t) gives the conditions for stochastic 
motion for given wave spectra. 

The condition for stochastic motion and the form of the velocity space 
diffusion D(v) depends on the dimensionality d of the system. The resonant 
domains satisfy co = k -v  which is a (d-1) -d imens ional  velocity subspace. 
For  d =  1 there is a unique resonant velocity, for d = 2  the resonant 
velocities occur on a line and for d = 3 the resonant velocities lie on a sur- 
face. For this reason the d = 1 system evolves qualitatively differently, form- 
ing a quasilinear plateau, whereas the d - -2  (simulations) and d = 3  
(laboratory experiments) do not form a plateau but evolve through a tur- 
bulent heating pulse as shown in Fig. 1. 

3.  L I M I T A T I O N S  O F  W E A K  T U R B U L E N C E  T H E O R Y  

It is the assumption of weak turbulence theory (11) that the dispersion 
in Ak and Av in the linear resonance co = k" v is sufficient to justify the use 
of the small amplitude expansion in powers of g~ = (co - k- v + i0 + ) - 1  
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For ion acoustic turbulence the dispersion is known to increase the range 
of validity of the expansion in g~ well above the single particle limit (3), 
but not to the amplitude levels of primary interest for ion acoustic tur- 
bulence. 

To concisely discuss the weak turbulence theory and its limits of 
validity we introduce the diagrammatic notation of Refs. 17-20. The third- 
order perturbation expansion used in weak turbulence theory is 

I 
k k k - - k  I k k - - h  i k - - k l - - k  2 

(6) 

where g~ and 52k~ ( -e lm)  40klkl" c3v = I kl with the summation 52~ 
deleted for j k~. Terms of order p(e/m)g~ C3vl 4 are dropped. The charge 
density pWT = 52 e ~ cSf wT dv is third order and yields the nonlinear Poisson 
field equation 

kl,k2",Uk I ~Ok2 -'l- E e (3) . . . . . . .  0 (7) 
kl + k2 kl + k2 + k3 

- -k  - -k  

determining ~ok. Here e~ is given in Eq, (4) and e~22 ) and ei~, 3 are the non- 
linear dielectrics given in Eqs. (2.21) and (2.22) of Ref. 19. 

The approximate radius of convergence of expansion (7) is determined 
by requiring that the third-order contribution in (7) be less than the first 
order. 

To determine the contributions of a(k 2),(3) to the dynamics the 
assumption is made that because of the Ak dispersion the coupling between 
the modes is weak. The long time scale cok T>> 1 evolution of the spectrum 
Ii,(T) = (]q~k{2) is determined by calculating (qo 1 @2(]73) perturbatively in 
terms of (@1(]72~03q74) and closing with the Gaussian or quasinormal 
approximation 

((101 (#92q)3(t045 ~-- ((t01 (~92 5((103(t0.4) mr- (q)l(t03 5((])2(i035 + ((471(7945((#92(/035 (8)  

The evolution of Ik(T) is given by 

ae'k dlk_ ,, V 46(2) ~(2) 
&Ok dT /3klk + Im ~ L kl'k-- kl --kl'k 

kl 61, 

143<_,,,I 
+ 2Im~ 1. Ik i lk- -k i  

kl ~k 

where e~ = 61, + ie[ and 6 2,3 a re  evaluated at co = cok. 

_ 26(3)  k l , - - k l , k ]  Iktlk 

(9) 
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The integrals in Im ~(3), too complicated to discuss here, are studied 
extensively in Refs. 21 and 22. The results are that the third-order con- 
tribution is comparable with the linear contribution, 

for 

I m  ~ e(~!-k,,k I pk,I - ( W/n Te)( kl)elcok ) 2 "~ Im ~,1 k 
ki 

wcrit ( c o k ~ 2 m  e 
nTe \kv~J mi (10) 

For W> W crit the third-order contribution from resonant electrons 
dominates in Eqs. (7) and (9). We conclude that weak turbulence theory is 
not valid for ion acoustic turbulence with W > W ~r~ because of the third- 
order truncation in Eq. (6). 

Problems in addition to the electron divergence discussed above occur 
when applying weak turbulence theory to ion acoustic turbulence. The 
principal problems in using weak turbulence theory are summarized briefly 
as follows: 

(1) The electron-wave interaction series is divergent for 
W/nTe > me/mi. 

(2) The weak turbulence wave spectrum I(k) determined by induced 
wave scattering requires a long-wavelength cutoff ~23) for finite 
W/nT~=Jdk(1+k222e) I(k ). A long-wavelength cutoff is observed in 
collisionless experiments/6'9'1~ and simulations. ~13'14) 

(3) Weak turbulence theory predicts no significant production of fast 
ions during a turbulent heating pulse. (Once the fast ion component is 
established quasilinear theory adequately describes its evolution). 

(4) Weak turbulence theory fails to describe the finite lifetime of the 
waves. A related problem is the absence of a three-wave resonance con- 
tribution to the theory since c~(cok- cok~- cok-k~)= 0 for the linear co(k). 

4. RENORMALIZED TURBULENCE THEORY 

To eliminate the divergence of the small-amplitude expansion for 
6fk(v ) it is necessary to select the dominant secular terms in the co = k .v  
resonance at nth order in the expansion and sum their contribution to all 
orders. The nth-order contribution is 

+ " . . +  (11) 
k k k kl k k--  k 1 
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and the highest-order multiple resonance in gO is given by 

?+ I S] 1 1-..1 
k k k - - k  1 k k k k 

+ subdominant terms 

= -  ~ ~  c~v 

+ subdominant terms 

I i o<f> gO __ . Iktklkl k - - k l  (~u ~V  
kl 

The selection and summation of these terms is given by Choi and 
Horton (1s'19) and is called the simply renormalized propagator ~k(v). The 
approximation is also studied by Misguich and Balescu (24) and is called the 
weak coupling approximation. 

Other higher-order but less secular terms can also be included in the 
summation (11) for the renormalized propagator. In the next 
approximation, called the doubly renormalized propagator ~k(v), the 

additional fourth-order term [ - - ~ i s  added to ~ .  Retaining the 

largest class of terms that can be formally summed in the propagator series 
leads to the nonlinear operator equation ~s'~s~ 

[ (e)Z3~-'ZIk~klklgk-k~(V) ~V gk(v )= l  (13) ~ ~  Ov ki 

for the fully renormalized propagator g)~(v) = (co - k. v + irk)-1. The simply 
renormalized propagator (12) can be calculated exactly in terms of the 
spectrum Ik~, whereas the nonlinear operato? equation (13) for the fully 
renormalized propagator is not solvable. 

In addition to the propagator series selected in Eq. (12) which has the 
0 interaction gkEk-0v as a terminal line, there are terms in the series where 

0 the contribution gkEk. •, is not terminal. The series formed by these terms 
leads to the renormalized vertex operator (2~ 

{~(v) = + ~Iklkl.~---~g~_kl{kg_~lkl-~v (14) 
kl 

The vertex contribution is well known for drift waves. (28) 
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With these selective summations of the perturbation series the renor- 
malized fluctuating distribution function is 

e 
6fk(v) = - - -  (pk gk(v) k '  ~ k ( f )  (15) 

m 

In addition to the coherent part 6fk(v) of the fluctuation given by (15) 
there is an incoherent contribution given by Dupree (27) arising from non- 
wave fluctuations called clumps and holes. The role of holes in d = 1 ion 
acoustic turbulence is considered in Section 5. 

Now we reconsider the convergence of the perturbation expansion of 
Eq. (11) in powers of (e/m) gk q~k k '  0~ using gk = (co - k.  v + i rk)-  1 given 
by Eq. (13). The new expansion operator is bounded by 

(e/m)~_2 a ek~o k 
e = max o9-  k .v  + ivk k "~v = mvk(vk/k) <~ 1 (16) 

where to obtain the inequality the smallest value of v~ allowed by Eq. (13) 
is v k >i (e/m) 2 2 2 2 k (pk/v,Av~ and Ark= vk/k to give v2>~ (e/m) k 2 Iqokl. 

The new or renormalized perturbation series appears at least 
asymptotically convergent for the levels of turbulence required to describe 
strong ion acoustic turbulence. The renormalized expansion eliminates the 
divergence problem (1) of Section 3. 

For electrons, the turbulent collision operator irk in the renor- 
malization series (12) describes angular scattering of the electrons by the 
ion acoustic fluctuations. Noting that k. v/co, ~- (mJmi)  ~/2 for thermal elec- 
trons the impulse dv = ekq)k/mev, imparted to a resonant electron is essen- 
tially perpendicular to v. The electron propagator reduces to 

(g~) l=co -k .  u -- iVeff (,~s V2v (17) 

with 

~ve e2Iul (W) 
Veff~--~-f dkl [kll-~e "~Cl(Ope -ff"~e (18) 

where the constant c 1 depends on the shape of the spectrum. For tur- 
bulence with W/nTe,,~(me/mi) 1/2 the effective Lorentz collision frequency 
from the turbulence is ve~copi  in agreement with strong turbulence 
experiments. (6-9) 

Analysis of the electron contribution to the renormalized dielectric 
function ~176 gk(co, W) shows that at long wavelengths 2 = 2rc/k > ve/verr the 
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Landau resonance is disrupted by the turbulent scattering. In the region 
k2De ~ VJOpe "~ W/riTe the ion Landau damping dominates and the wave 
energy is absorbed. The absorption leads to a low-k cutoff of the spectrum 
I(k)  and eliminates the long-wavelength divergence problem (2) of Sec- 
tion 3. The details of the gk(co, W) and I(k)  calculations are given in 
Refs. 18, 19, 30. A typical wave number spectrum is shown in Fig. 2. 

The ion interaction with the turbulence is dominated by the high- 
energy ions since ~ok/k >> v i = (Time)  ~/2. The renormalized ion propagator is 
calculated from velocity diffusion taking Dip(k)Oa0a + Dj_(k)(I-OdOd). The 
explicit formulas for ~,~(v, v') are given in Section 6 of Ref. 19. The tur- 
bulent propagator gk~o(v, v') and the ~o transform gk(v, v', T) form a 
Markov semigroup with 

f dV'gk(V V', T1) gk(V' , V", "L'2) = g~(v, V", r~ +z2) 

for z~ + T 2 > 0 and zero for z~ or % < 0. From the analysis of the two-point 
phase space correlation function f(xlvl;XzV2, T) Dupree (291 shows that 
neighboring trajectories in phase space diverge exponentially with the 
separation increasing as k Ibxl + Ibv/v,I ~exp[ (kZDk)  1/3 t]. The result is an 
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Fig. 2. Wavenumber spectrum from analytic solution of renormalized mode-coupling 
equation taking square box angular distribution with cos ,9 o = cs/v a. 
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exponential sensitivity to the initial data which gives rise to the statistical 
Markovian behavior for times greater than the Lyapunov time 
t > r~ = (kZDk) 1/3 describing the maximum lifetime of wavelike 
correlations. 

The renormalized propagator gk(V,V',Z) describes a dissipative 
dynamics which opens new regions of k, v, ~0 space to wave-particle 
interactions. Although the net dissipation is constrained by frequency sum 
rules, (31) the interactions now extend well outside the region e)= k 'v .  The 
evolution of the background ion distribution is given by 

t3t =c3-'v" dv 'D(v ,v ' , r ) -  ( f ( v ' , t ) )  (19) 

with the nonlocality of D(v, v') being strong for W/nT> 10 -2. Calculations 
of the ion acceleration from Eq. (19) show that the renormalization 
eliminates problem (3) of Section 3. 

The charge density p(kn)=ZeSff~n)dv computed from the renor- 
realized perturbation expansion yields the mode-coupling equation (7) 
where the formulas for 5(k~!..~, contain gk(v, W). Iterating the equation and  
neglecting the fourth cumulant (8) also leads to Eq. (9). For long 
wavelengths, however, the procedure fails owing to the divergence from 

e ~ ] ! k -  kl ~okl q~k - kx 

(70(k 2)~- ((Ok __ (j)kl __ (/)k__ kl)(~/O(j)k) +m as k, k l ~ O  (20) 

and the higher-order iterations of this fluctuation propagator. 
The correlations from the near-three-wave resonance (20) at long 

wavelengths leads to the formation of intrinsic high-order correlation as 
contained in solitons. The soliton components of the field are discussed in 
Section 5. 

Assuming the fields remain sufficiently random that a statistical 
description remains valid we may sum the divergence from 5(2)2(]9kl q)k2/51k to 
all orders to obtain a renormalized fluctuation propagator 521. The renor- 
realized dispersion function satisfies the equation 

/ 4 5 ( 2 )  5( 2 ) 
kx,k-- kl ~ ki.k 2g(3 ) "~ (21) 

5~ l =  51 -- 2 t I1~ 1 k, "1, klJ<,] Ik l  
h i  = klO)1 

and the spectral equation becomes 

Ig~l] 2 I k = 2 ~, 15~21!k_ k,I 2 Iktlk_ki 
kl 

(22) 
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Equations (21) and (22) are the equivalent of the direct interaction 
approximation (DIA) of fluid turbulence with respect to the mode coupling 
(2) The equations in this form were first analyzed for ion acoustic tur- kl,k2' 

bulence by Tsytovich. (32~ Our mode simulation studies indicate that the 
effects of the three-wave coupling terms are less important, because of the 
small k space volume for divergence (20), than the induced wave scattering 
process in determining the shape of the wave number spectrum 
I(k) = S+~ dco/2z~ I(k, co) which is a cone in the direction of re. 

The near-three-wave resonance is important in determining the fre- 
quency linewidth through Eqs. (21) and (22). The linewidth Acok is given 
approximately by Acok = --Ira e~,~/&nl/&ok and the spectral distribution is 
approximately 

2Acok I k 
Ik(co) = (co - cok) 2 + Aco~, (23) 

The complete solution of Eqs. (21) and (22) for the spectrum Ik~ and non- 
linear dielectric e~,l(co) remains a difficult problem. The approximate 
solution (23) with Acok,,~cok(W/nTe) eliminates the finite lifetime problem 
(4) of Section 3. 

The normalized turbulence theory given here is the direct renor- 
malization of weak turbulence theory. An advantage of the theory is its 
ability to directly predict the quantities of interest to experiments and 
simulations. A number of comparisons have been made such as with 
Stenzel, (6) Kawai et al., (9) and Slusher et al., (1~ and the simulations of 
Biskamp et aL O3'14) The scaling of the anomalous resistivity predicted by 
the theory is shown in Fig. 3. 

There are other statistical theories of Vlasov turbulence principally 
those which are developed from applying the direct interaction 
approximation to the Vlasov-Poisson equations. The first attempt with the 
DIA was given by Orzsag and Kraichnan. (33) Subsequently, a systematic 
theory based on the DIA is given by DuBois and Espedal (26) and 
developed further by DuBois./27~ The theory contains additional nonlocal 
velocity space correlations arising from the shielding clouds of particles 
contained in the response function R12=fifkl/O(pkl and the fluctuation 
propagator 1/e~ ~. The new contributions can be interpreted in terms of 
quasiparticles as in many body field theories. An example of these 
quasiparticle contributions and their relation to the test particle propagator 
gk(v) analyzed here is shown diagrammatically in Figs. 1 and 2 of 
DuBois. (27) It remains a difficult problem to evaluate the effects of these 
nonlocal shielding or polarization contributions contained in the DIA 
theory of ion acoustic turbulence. 
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Fig. 3. Anomolous resistivity at maximum of turbulent heating pulse. 

5.  N O N W A V E  C O N S T I T U E N T S  

Renormalized turbulence theory retains the basic description of weak 
turbulence theory of a gas of interacting waves and particles. By renor- 
malization of the particles. By renormalization of the particle propagator 
gko)(v, W) and the fluctuation propagator s~,l(co, W) the secular growth 
from the bare resonant interactions are eliminated. The renormalization 
sums to all order the divergent contributions to the perturbation series. 
The renormalized theory is capable of calculating the quantities of interest 
in plasma turbulence when high-order correlations are not required. The 
closure of the hierarchy of correlation functions in renormalized turbulence 
theory loses the high-order correlations contained in solitons, double 
layers, and phase space ion holes. 

A one-dimensional, long-wavelength ion acoustic wave steepens owing 
to w?xv until wave dispersion at the Debye scale balances the steepening. 
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The balance of dispersion and the steepening leads to the spectrum 

[ ( kc, '~'/=]exp(-i~:~o) (24) ~0,(k, co) = ~/~6(co - kc) csch =k \co _ k c #  J 

of correlated fluctuation components describing a seche[K(x-ct)]  soliton. 
A similar situation applies to the double layer where the localized potential 
now contains a net jump Aq~ across the structure. 

The ion acoustic solitons preserve their identity for many 
soliton-soliton and soliton-wave collisions. This coherence property has 
been used to construct an ideal gas model (34~ for plasma fluctuations com- 
posed of randomly distributed solitons. The soliton component of the fluc- 
tuation spectrum for such a gas is given by I(k, co)= 
k2fs(co/k)csch2{rck[(kcj(co-kcs)] 1/2} where f ,(v)dv is the number of 
solitons with the speed v >~ c, in the range dr. The Gibbs ensemble with 
E=H(~o, ~?xq)) may be used to estimate f,(v). 

Recently studies (35) have considered the effect of adding linear dis- 
sipative terms modeling the growth and damping 7(k) taken from linear 
particle resonances into the soliton equation. Numerical simulations show 
that a mixture of solitons and wave components are produced from the 
unstable growth of noise in this dissipative soliton system. 

A more realistic model for coherent structures in ion acoustic tur- 
bulence is given by the Kadomtsev-Petviashivili (36) equation for two- 
dimensional solitons. For the cone of waves propagating with the mean 
angle 0 < 1 with respect to the drift velocity va the dispersion in wave fre- 
quencies is 

co(k)=c, k z - k 3  + z 

Taking into account the wave steepening leads to 

a~q, a ' -q , , lv~ a% a ( & o )  ~--~z2 +-~ . ~o ~o = azat + ~ + ~ 7z 
Y~z 

(25) 
F(z, t) 

with the growth rate ~)q9 for the unstable dissipative system and F(t) for the 
forced conservative system. 

There are exact two-dimensional soliton solutions of Eq. (25). The 
equation is used to prove the transverse stability (36) of the one-dimensional 
solitons propagating parallel to vaL The time scale t, for the formulation of 
the soliton is given by 

1 

ts 
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and balances the transverse dispersion of the waves for 

..w 
n L - \  <k z> l 

(26) 

The interaction of three obliquely propagating solitons is strong when 
the m, k defined by s echZ(k ' x - co t )  satisfy the three-wave resonance 
condition. (38) When the resonance condition is satisfied two solitons collide 
to produce a third soliton. 

Experimental studies (39'4~ showing the oblique collisions of ion 
acoustic solitons have been performed confirming the resonance condition 
and other properties. Clearly, with a large number of obliquely colliding 
solitons the system may evolve to a chaotic state with strong correlations. 

Another important type of correlation that lives for times long com- 
pared with the lifetime of the wave constituients is the phase space 
hole. (41'42) The role of ion holes has been demonstrated in d =  1 particle 
simulations of current-driven ion acoustic turbulence. (43) The simulation 
shows that the production of holes starts for vd below the threshold for 
unstable waves from a nonlinear instability. 

Making a hole 6f,.(x, v) < 0 in the ion phase space distribution of size 
Av "~ (e6~ /mi )  1/2 and A x ~  102D~ leads to a long-lived fluctuation & b ( x -  vt)  

for v .G< v~ with 

(v2 (27) 

The negative potential ~5~b of the hole reflects electrons v e --* --re and in the 
process gains momentum 2meAve .  Calculating the imbalance of the right- 
and left-going momentum transfer due to the drift vd of the electron dis- 
tribution leads to the hole growth rate 

4 (28) 

for holes with 0 < v < yd. 
The hole turbulence appears as fluctuation components with m ~ kvi ,  a 

region of heavy damping for linear waves. Probably, the most important 
aspect of the hole turbulence phenomena is the possibility that it relaxes 
the onset conditions for the occurrence of ion acoustic turbulence and the 
associated transport processes. There are, in fact, numerous experiments 
with indications of ion acoustic turbulence where the conditions on T I T  e 
and v J c ,  for unstable waves are not satisfied. 
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We conclude that although the phenomena of wave-particle interac- 
tions in the context of renormalized turbulence theory has given formulas 
for calculating k, v, 09 spectra and transport coefficients, as given in 
Figs. 1-3, for example, the role of solitons and phase space holes, especially 
as they interact with the wave fluctuation spectrum, remains to be 
evaluated. 
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